Self-training (ST) has prospered again in language understanding by augmenting the fine-tuning of pre-trained language models when labeled data is insufficient. However, it remains challenging to incorporate ST into attribute-controllable language generation. Augmented by only self-generated pseudo text, generation models over-emphasize exploitation of the previously learned space, suffering from a constrained generalization boundary. We revisit ST and propose a novel method, DuNST to alleviate this problem. DuNST jointly models text generation and classification with a shared Variational AutoEncoder and corrupts the generated pseudo text by two kinds of flexible noise to disturb the space. In this way, our model could construct and utilize both pseudo text from given labels and pseudo labels from available unlabeled text, which are gradually refined during the ST process. We theoretically demonstrate that DuNST can be regarded as enhancing exploration towards the potential real text space, providing a guarantee of improved performance. Experiments on three controllable generation tasks show that DuNST could significantly boost control accuracy while maintaining comparable generation fluency and diversity against several strong baselines.
translated by 谷歌翻译
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The runtime of the resulting models was evaluated on the Snapdragon's 8 Gen 1 GPU that provides excellent acceleration results for the majority of common deep learning ops. The proposed solutions are compatible with all recent mobile GPUs, being able to process Full HD photos in less than 20-50 milliseconds while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper.
translated by 谷歌翻译
Self-supervised pre-training recently demonstrates success on large-scale multimodal data, and state-of-the-art contrastive learning methods often enforce the feature consistency from cross-modality inputs, such as video/audio or video/text pairs. Despite its convenience to formulate and leverage in practice, such cross-modality alignment (CMA) is only a weak and noisy supervision, since two modalities can be semantically misaligned even they are temporally aligned. For example, even in the commonly adopted instructional videos, a speaker can sometimes refer to something that is not visually present in the current frame; and the semantic misalignment would only be more unpredictable for the raw videos from the internet. We conjecture that might cause conflicts and biases among modalities, and may hence prohibit CMA from scaling up to training with larger and more heterogeneous data. This paper first verifies our conjecture by observing that, even in the latest VATT pre-training using only instructional videos, there exist strong gradient conflicts between different CMA losses within the same video, audio, text triplet, indicating them as the noisy source of supervision. We then propose to harmonize such gradients, via two techniques: (i) cross-modality gradient realignment: modifying different CMA loss gradients for each sample triplet, so that their gradient directions are more aligned; and (ii) gradient-based curriculum learning: leveraging the gradient conflict information on an indicator of sample noisiness, to develop a curriculum learning strategy to prioritize training on less noisy sample triplets. Applying those techniques to pre-training VATT on the HowTo100M dataset, we consistently improve its performance on different downstream tasks. Moreover, we are able to scale VATT pre-training to more complicated non-narrative Youtube8M dataset to further improve the state-of-the-arts.
translated by 谷歌翻译
Deep learning (DL) methods have been widely applied to anomaly-based network intrusion detection system (NIDS) to detect malicious traffic. To expand the usage scenarios of DL-based methods, the federated learning (FL) framework allows multiple users to train a global model on the basis of respecting individual data privacy. However, it has not yet been systematically evaluated how robust FL-based NIDSs are against existing privacy attacks under existing defenses. To address this issue, we propose two privacy evaluation metrics designed for FL-based NIDSs, including (1) privacy score that evaluates the similarity between the original and recovered traffic features using reconstruction attacks, and (2) evasion rate against NIDSs using Generative Adversarial Network-based adversarial attack with the reconstructed benign traffic. We conduct experiments to show that existing defenses provide little protection that the corresponding adversarial traffic can even evade the SOTA NIDS Kitsune. To defend against such attacks and build a more robust FL-based NIDS, we further propose FedDef, a novel optimization-based input perturbation defense strategy with theoretical guarantee. It achieves both high utility by minimizing the gradient distance and strong privacy protection by maximizing the input distance. We experimentally evaluate four existing defenses on four datasets and show that our defense outperforms all the baselines in terms of privacy protection with up to 7 times higher privacy score, while maintaining model accuracy loss within 3% under optimal parameter combination.
translated by 谷歌翻译
最近,通过“向导”模拟游戏收集了一类以任务为导向的对话(TOD)数据集。但是,《巫师》数据实际上是模拟的数据,因此与现实生活中的对话根本不同,这些对话更加嘈杂和随意。最近,Seretod挑战赛是组织的,并发布了Mobilecs数据集,该数据集由来自中国移动的真实用户和客户服务人员之间的真实世界对话框组成。基于Mobilecs数据集,Seretod挑战具有两个任务,不仅评估了对话系统本身的构建,而且还检查了对话框成绩单中的信息提取,这对于建立TOD的知识库至关重要。本文主要介绍了Mobilecs数据集对这两项任务的基线研究。我们介绍了如何构建两个基线,遇到的问题以及结果。我们预计基线可以促进令人兴奋的未来研究,以建立针对现实生活任务的人类机器人对话系统。
translated by 谷歌翻译
由于遮挡引起的严重观察,基于手动对象相互作用的单个基于手动对象相互作用的重建具有挑战性。本文提出了一种基于物理的方法,以更好地解决重建中的歧义。它首先提出了一个基于力的动力学模型,该模型不仅恢复了未观察到的触点,而且还解决了合理的接触力。接下来,提出了一种基于置信的幻灯片预防方案,该方案将运动学上的信心和接触力都结合在一起,共同模拟静态和滑动接触运动。定性和定量实验表明,该提出的技术在物理上可行,更准确的手动相互作用,并使用单个RGBD传感器实时估计可见的接触力。
translated by 谷歌翻译
传统意图分类模型基于预定义的意图集,仅识别有限的内域(IND)意图类别。但是用户可以在实用的对话系统中输入室外(OOD)查询。这样的OOD查询可以提供未来改进的方向。在本文中,我们定义了一项新任务,广义意图发现(GID),旨在将IND意图分类器扩展到包括IND和OOD意图在内的开放世界意图集。我们希望在发现和识别新的未标记的OOD类型的同时,同时对一组标记的IND意图类进行分类。我们为不同的应用程序方案构建了三个公共数据集,并提出了两种框架,即基于管道的框架和端到端,以实现未来的工作。此外,我们进行详尽的实验和定性分析,以理解关键挑战,并为未来的GID研究提供新的指导。
translated by 谷歌翻译
大多数现有的插槽填充模型倾向于记住实体的固有模式和培训数据中相应的上下文。但是,这些模型在暴露于口语语言扰动或实践中的变化时会导致系统故障或不良输出。我们提出了一种扰动的语义结构意识转移方法,用于训练扰动插槽填充模型。具体而言,我们介绍了两种基于传销的培训策略,以分别从无监督的语言扰动语料库中分别学习上下文语义结构和单词分布。然后,我们将从上游训练过程学到的语义知识转移到原始样本中,并通过一致性处理过滤生成的数据。这些程序旨在增强老虎机填充模型的鲁棒性。实验结果表明,我们的方法始终优于先前的基本方法,并获得强有力的概括,同时阻止模型记住实体和环境的固有模式。
translated by 谷歌翻译
最新的(SOTA)表面正常估计器(SNES)通常以端到端的方式将深度图像转化为表面正常地图。尽管这样的SNE极大地降低了效率和准确性之间的权衡,但它们在空间不连续性(例如边缘和山脊)上的表现仍然不令人满意。为了解决这个问题,本文首先引入了一种新型的多向动态编程策略,以最大程度地减少(路径)平滑度能量来适应性地确定嵌入式(共平面3D点)。然后,可以使用新型的递归多项式插值算法对深度梯度进行迭代进行完善,这有助于产生更合理的表面正常状态。我们引入的空间不连续性意识(SDA)深度梯度改进策略与任何深度到正常的SNE都兼容。我们提议的SDA-SNNE的性能要比所有其他SOTA方法,尤其是在空间不连续性附近/方面都要高得多。我们进一步评估了SDA-SNE在不同的迭代方面的性能,结果表明它仅在少量迭代后会快速收敛。这样可以确保其在需要实时性能的各种机器人技术和计算机视觉应用中的高效率。具有不同随机噪声的数据集上的其他实验进一步验证了我们的SDA-SNE的鲁棒性和环境适应性。我们的源代码,演示视频和补充材料可在mias.group/sda-sne上公开获得。
translated by 谷歌翻译